N-[ω -(Tetralin-1-yl)alkyl] Derivatives of 3,3-Dimethylpiperidine Are Highly Potent and Selective σ_1 or σ_2 Ligands

Francesco Berardi,^{*,†} Sergio Santoro,[†] Roberto Perrone,[†] Vincenzo Tortorella,[†] Stefano Govoni,[‡] and Laura Lucchi[§]

Dipartimento Farmaco-Chimico, Università di Bari, via Orabona, 4, 70126 Bari, Italy, Istituto di Farmacologia, Università di Pavia, via Taramelli, 12, 27100 Pavia, Italy, and Istituto di Scienze Farmacologiche, Università di Milano, via Balzaretti, 9, 20133 Milano, Italy

Received October 13, 1997

Several 3,3-dimethyl-*N*-[ω -(tetrahydronaphthalen-1-yl)alkyl]piperidine derivatives and some related compounds were prepared. Their affinities and σ -subtype selectivities were investigated by radioligand binding assays, labeling σ_1 receptors with [³H]-SKF 10047 and σ_2 receptors with [³H]-DTG. Many tested compounds bound σ_1 and/or σ_2 receptors with nanomolar or subnanomolar IC₅₀ values. Compound (+)-**22**, (+)-3,3-dimethyl-1-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propyl]piperidine, was the most potent (IC₅₀ = 0.089 nM) and selective σ_1 ligand (1340-fold), showing a 10-fold enantioselectivity. Compounds **29** (3,3-dimethyl-1-[4-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-pentyl]piperidine) and **31** (3,3-dimethyl-1-[5-(1,2,3,4-tetrahydronaphthalen-1-yl]-*n*-pentyl]piperidine) were highly potent (IC₅₀ = 0.016 nM and IC₅₀ = 0.008 nM, respectively) and highly selective σ_2 ligands (more than 100 000-fold).

Interest around sigma (σ) receptors has been increased by the perspective of a potential use of σ agents in psychiatric disorders,¹⁻³ especially as atypical antipsychotics.^{4–6} Further possible applications of σ ligands are supposed in cocaine abuse,^{7,8} epilepsy,⁹ neuroprotection,^{10–12} and cognition enhancing,¹³ as well as in tumor diagnosis.^{14,15} Indeed, suggested functional roles of σ receptors in various tissues include dopamine¹⁶ and NMDA receptor modulation,¹⁷ interaction with neuropeptides and neurosteroids,³ neurotoxicity in glial cells,¹⁸ and involvement in the modulation of the biosynthesis of rat melatonine.¹⁹ Nevertheless, σ ligands failed in clinical experimentations for schizophrenia,² and dystonic side effects of neuroleptics were ascribed to the σ activity.^{20,21} Moreover, the individualization of a clear the rapeutic target for σ ligands is complicated by the lack of any endogenous σ ligand and by the existence of multiple σ receptor subtypes.^{22,23} Therefore the real significance of the enigmatic σ receptor has to be still disclosed.

However further new perspectives of interpretation for the action of σ ligands and for drug development were opened by the recent cloning and expression of the mammalian,²⁴ and then of the human, σ_1 receptor.²⁵ This latter possesses a single putative transmembrane domain and is homologue of the yeast sterol C₈–C₇ isomerase. Thus, sterol biosynthesis might be a σ_1 receptor function. When inhibited, it is supposed to produce changes in the lipid composition of cerebral membranes with alteration of the neuronal excitability.²⁶ It was speculated that the σ_2 receptor could also be an enzyme site. The development of highly selective σ_1 or σ_2 ligands may therefore provide new tools to investigate the functional and physiological role of $\boldsymbol{\sigma}$ receptors.

Up to now, several structurally unrelated σ ligands have been investigated²⁷ in structure–activity relationship studies, but few of them are known to be actually selective versus other central nervous system receptors and other σ subtypes. Potent and highly selective σ_1 ligands are (+)-pentazocine and related *N*-benzyl-6,7benzomorphans²⁸ and some dextromethorphan analogues.²⁹ Only recently some selective σ_2 ligands were found by Lundbeck's researchers.³⁰

In a previous work³¹ we found potent and selective σ_1 ligands, such as some 3,3-dimethyl-*N*-(tetrahydronaphthalen-1-yl)piperidine derivatives, possessing a pooraffinity profile toward D2, 5-HT_{1A}, and PCP receptors. Furthermore, the same (tetralin-1-yl)alkyl moiety was present in some piperazine derivatives, which demonstrated³² to bind the σ_2 receptor also but without adequate σ -subtype selectivity. Encouraged by such results we prepared a series of N-[ω -(1,2,3,4-tetrahydronaphthalen-1-yl)alkyl] and N-[ω -(indan-1-yl)alkyl] derivatives of 3,3-dimethylpiperidine and some related compounds (Table 1). In order to contribute to finding new potent and highly selective σ_1 or σ_2 ligands, our interest was focused on the structural features improving the affinity and the σ subtype selectivity. Thus, the 3,3-dimethylpiperidine moiety which is in agreement with Glennon's σ_1 receptorial model³³ was retained. The length of the intermediate alkyl chain and the size and the rigidity of the aliphatic ring were varied as well as the position of a methoxyl group on the aromatic ring. The possible enantioselectivities of σ_1 and σ_2 receptors were investigated preliminary on the enantiomers (+)-**22** and (-)-**22**.

Chemistry

The compounds here reported (Table 1) were mainly prepared from ω -haloalkyl derivatives (Scheme 1) with

S0022-2623(97)00692-4 CCC: \$15.00 © 1998 American Chemical Society Published on Web 09/18/1998

^{*} To whom correspondence should be addressed.

[†] Università di Bari.

[‡] Università di Pavia.

[§] Università di Milano.

Table 1. Physical Properties

compd	R_1	R_2	\mathbb{R}_3	A–B	т	п	formula ^a	mp (°C)	recryst solv ^{b}
16	Н	Н	Н	C=CH	1	3	C ₁₉ H ₂₇ N·HCl·H ₂ O	189-190	А
17	Н	Н	Н	CH-CH ₂	1	3	$C_{19}H_{29}N\cdot HCl^{c}$	162	А
18	Н	OCH_3	Н	$CH-CH_2$	1	3	$C_{20}H_{31}NO \cdot C_2O_4H_2$	151 - 152	А
19	Н	Н	OCH_3	$CH-CH_2$	1	4	$C_{21}H_{33}NO\cdot HCl\cdot^{1}/_{5}H_{2}O$	161 - 162	А
20	Н	Н	Н	CH-CH ₂	2	2	$C_{19}H_{29}N\cdot HCl$	191 - 192	А
21	Н	Н	Н	CH-CH ₂	2	3	C ₂₀ H ₃₁ N·HCl·H ₂ O	202 - 203	В
(\pm) -22 d	Н	Н	OCH_3	CH-CH ₂	2	3	$C_{21}H_{33}NO \cdot HCl \cdot \frac{1}{3}H_2O$	168 - 169	А
(+)- 22	Η	Η	OCH_3	$CH-CH_2$	2	3	$C_{21}H_{33}NO\cdot HCl\cdot 1/_2H_2O$	183 - 184	А
(–)- 22	Η	Η	OCH_3	$CH-CH_2$	2	3	C ₂₁ H ₃₃ NO·HCl	183 - 184	А
23	Η	Η	OH	$CH-CH_2$	2	3	C ₂₀ H ₃₁ NO·HCl	235 - 236	В
24	Η	OCH_3	Η	$CH-CH_2$	2	3	$C_{21}H_{33}NO\cdot HCl\cdot^{1}/_{2}H_{2}O$	185 - 187	А
25	OCH_3	Η	Η	$CH-CH_2$	2	3	$C_{21}H_{33}NO\cdot HCl\cdot \frac{4}{5}H_2O$	175 - 176	А
26	Η	Η	Η	C=CH	2	4	$C_{21}H_{31}N \cdot C_2O_4H_2$	154 - 155	В
27^d	Η	Η	Η	$CH-CH_2$	2	4	$C_{21}H_{33}N\cdot HCl\cdot^{1}/_{2}H_{2}O$	175 - 176	А
28	Η	Η	OCH_3	$CH-CH_2$	2	4	C ₂₂ H ₃₅ NO·HCl	177 - 178	А
29	Η	OCH_3	Η	$CH-CH_2$	2	4	C ₂₂ H ₃₅ NO·HCl	166 - 167	А
30	OCH_3	Η	Η	$CH-CH_2$	2	4	C ₂₂ H ₃₅ NO·HCl	181 - 182	А
31	Н	Н	Н	$CH-CH_2$	2	5	$C_{22}H_{35}N\cdot HCl^{1/4}H_{2}O$	168	Α
32	Н	OCH_3	Н	$CH-CH_2$	2	5	C ₂₃ H ₃₇ NO·HCl	175 - 176	Α
33	Н	Н	Н	$CH_2 - H^e$	0	4	C ₁₈ H ₂₉ N·HCl	151 - 152	Α

^{*a*} White to ivory-colored (**16** and **22** are pale yellow, **17**, **23**, and **32** are beige-colored) crystalline powders, analyzed for C, H, N; results were within $\pm 0.4\%$ of the theoretical values for the formulas given. ^{*b*} A = methylene chloride/ethyl ether, B = methanol/ethyl ether. ^{*c*} H: calcd, 9.82; found, 10.32. ^{*d*} Compounds previously reported as hydrogen oxalate salts (see ref 31). ^{*e*} Phenylpentyl derivative (see Scheme 3).

Scheme 1

3,3-dimethylpiperidine in acetonitrile according to the previously described procedure.³¹ The indene intermediates **1a**,**c** and **3b** were prepared from 1-indanone and the appropriate Grignard's reagent.^{34,35} 5-chloro-*n*pentylmagnesium bromide was used to obtain the intermediates **5a**,**c**. Compounds **16** and **26** were prepared³¹ from the indene **1a** and the 1,2-dihydronaphthalene **4a**, respectively. Target compounds **17–19**, **21**,

Scheme 2^a

^{*a*} Reagents: A = LiAlH₄; B = CH₃SO₂Cl; C = 3,3-dimethylpiperidine; D = NaOH; E = (R)-(+)- or (S)-(-)-1-phenylethylamine; F = SOCl₂; G = CH₂N₂, Ag⁺.

24, **25**, and **28–32** were prepared from indanes **2** and **6** and tetrahydronaphthalenes **7** and **8**, which were obtained from the corresponding unsaturated intermediates **1** and **3–5** by catalytic hydrogenation.^{31,35}

Following a previously reported³⁶ synthetic route, the ester **9a**³⁷ (Scheme 2) was prepared and reduced to 2-(1,2,3,4-tetrahydronaphthalen-1-yl)ethanol³⁸ (**12a**) with LiAlH₄. The alcohol **12a** was derivatized to the methylsulfonate **13a** with methanesulfonyl chloride,³⁹ and the latter was reacted with 3,3-dimethylpiperidine to yield the tetralinethyl compound **20**. The optically active compounds (+)-**22** and (-)-**22** were prepared in an analogous manner from (-)- and (+)-3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propanol, (-)-**12b** and (+)-**12b**, respectively, via the corresponding sul-

Scheme 3

fonates (+)-13b and (-)-13b. An alkaline hydrolysis of the ester $9b^{36}$ gave the racemic acid (±)-10.⁴⁰ Its salts, first with (R)-(+)-1-phenylethylamine and then with (S)-(-)-1-phenylethylamine, were resolved by fractional crystallization. (+)-10 and (-)-10 were individually derivatized to the corresponding acyl chlorides and then transformed to the methyl esters (+)-11 and (-)-11 with diazomethane in the presence of silver benzoate.⁴¹ Reduction of (+)-11 and (-)-11 by LiAlH₄ gave (-)-12b and (+)-12b, respectively, which were treated in the above-mentioned way to yield the compounds (+)-22 and (-)-22, respectively. The phenolic derivative 23 was obtained by demethylation of compound 22 with 48% HBr. Compound 33 (Scheme 3) was prepared from the corresponding acyl chloride of 5-phenylvaleric acid (14) and 3,3-dimethylpiperidine and by subsequent reduction of the derived amide 15 with LiAlH₄.

Pharmacology

All target compounds 16–33 as hydrochloride salts (compounds 18 and 26 as hydrogen oxalate salts) were evaluated for in vitro affinity on σ_1 and σ_2 receptors by radioreceptor binding assays. [3H]-(+)-SKF 10047 (Nallylnormetazocine) was used as a specific radioligand for the σ_1 receptor because of the legal restrictions to the use of [³H]-(+)-pentazocine. This assay was performed in the presence of unlabeled MK-801 ((+)-5methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10imine hydrogen maleate) to mask MK-801 sites (PCP binding sites) in the NMDA receptor. Whole rat brain membranes were used as tissue, and cold (+)-SKF 10047 was used to define the specific binding. σ total binding was performed using [³H]-DTG as specific radioligand, guinea-pig brain cortex as tissue, and cold DTG to define the specific binding. The study of the responses of this preparation to specific σ_1 displacers such as (+)-SKF 10047 or dextromethorphan revealed that, using the adopted conditions, the measured binding was for over 2/3 of σ_2 type.

Concentrations required to inhibit 50% of radioligand specific binding (IC₅₀) were determined by three independent experiments with sample in duplicate or triplicate and six to nine different concentrations of the drug studied. Specific binding represented 75–88% of the total binding. The K_d values were calculated from saturation experiments using the latest version of the LIGAND computerized program as originally described by Munson and Rodbard.⁴²

Table 2. Binding Affinities and Selectivities

	IC_{50} , nM^a					
	[³ H]-(+)-SKF		IC ₅₀ ratio			
compd	10047	[³ H]-DTG	σ_2/σ_1	σ_1/σ_2		
16	0.99 ± 0.05	1.09 ± 0.04	1	1		
17	6.9 ± 0.5	4.5 ± 0.4	0.6	1.5		
18	4660 ± 440	1.01 ± 0.03		4610		
19	9.3 ± 0.5	4.6 ± 0.2	0.5	2		
20	>10 000	1.10 ± 0.08		>9090		
21	252 ± 9	135 ± 6	0.5	2		
(±)- 22	0.48 ± 0.03^{b}	138 ± 6	287			
(+)- 22	0.089 ± 0.008	119 ± 5	1340			
(-)- 22	0.85 ± 0.11	111 ± 6	131			
23	41.0 ± 4.2	100 ± 6	2	0.4		
24	>10 000	88 ± 7		>114		
25	22.0 ± 2.1	109 ± 3	5			
26	9450 ± 960	1.1 ± 0.1		8590		
27	0.69 ± 0.03^b	5.5 ± 0.1	8			
28	978 ± 77	129 ± 7		8		
29	2150 ± 110	0.016 ± 0.003		>100 000		
30	25.6 ± 2.0	0.44 ± 0.04		58		
31	1520 ± 150	0.008 ± 0.001		>100 000		
32	0.62 ± 0.01	0.030 ± 0.001		21		
33	5830 ± 840	10.0 ± 1.6		583		
(+)-SKF 10047	92 ± 5					
DTG		45 ± 4				

^{*a*} Data are expressed as mean values of three experiments with duplicate or triplicate samples. ^{*b*} Previously tested also as hydrogen oxalate salt in [3 H]-(+)-pentazocine binding on whole rat brain membranes (see ref 31).

Results and Discussion

Nearly all of the 3,3-dimethylpiperidine derivatives here reported showed a moderate to very high σ affinity (Table 2).

Structure– σ_1 **Affinity.** The potent ligands (±)-22 and **27** confirmed the results of their previous³¹ binding assay with $[^{3}H]$ -(+)-pentazocine. Besides, (±)-22 revealed a good σ_1 versus σ_2 selectivity (287-fold). The σ_1 affinity of its upper homologue **28** dropped ($IC_{50} = 978$) nM), suggesting that a four-methylene chain is incompatible with the 5-methoxyl substitution. On the other hand, when σ_1 binding data of the homologous series **20**, **21**, **27**, and **31** were compared, the best affinity was shown by the tetralin having a four-membered intermediate chain (27). In the series of the 6-MeO derivatives 24, 29, and 32, only the latter reached a significant IC_{50} value (0.62 nM), but it showed a higher affinity toward the σ_2 receptor. A poor σ_1 affinity (IC₅₀ = 5830 nM) was demonstrated by the phenylpentyl derivative 33, where its intermediate chain has a greater conformational freedom than that of the related tetralin 27. As far as the methoxyl substitution is concerned, the 5-methoxyl derivative (±)-**22** showed the highest σ_1 affinity and selectivity compared to its isomers and the corresponding phenolic derivative 23. When the enantiomers of (±)-**22** were tested, the σ_1 affinity of (+)-**22** appeared almost 10-fold greater than that of (-)-22, whereas their σ_2 affinities were equivalent. Therefore the compound (+)-**22** was a highly potent (IC₅₀ = 0.089nM) and selective (1340-fold) σ_1 ligand.

Structure $-\sigma_2$ **Affinity.** Tested compounds were all σ_2 ligands to some extent. In the homologous series of the ω -(tetralin-1-yl)alkyl derivatives **20**, **21**, **27**, and **31**, an intermediate chain of five methylenes (**31**) gave the best results in terms of σ_2 affinity and selectivity (IC₅₀ = 0.008 nM and > 100 000-fold). Very high σ_2 affinities were found also for the 6-methoxytetralins **32** and **29**

(IC₅₀ = 0.030 nM and IC₅₀ = 0.016 nM, respectively). The first had a five-membered chain, the second a fourmembered chain and was highly σ_2 selective (> 100 000fold). *N*-propyl derivatives **21**, **24**, and **25** demonstrated a lower σ_2 affinity compared to the respective *n*-butyl derivatives **27**, **29**, and **30**. Generally, highly potent σ_2 affinity seemed linked to a chain length of at least four methylenes. An adequate σ_2 affinity and a certain selectivity remained in the open derivatives **33**. In the (tetrahydronaphthalen-1-yl)-*n*-propyl derivatives (**21**, (±)-**22**, **24**, **25**) the presence of the methoxyl group wherever positioned was unimportant, since their IC₅₀ values ran around 100 nM. A similar affinity without enantioselectivity was maintained by (+)-**22** and (-)-**22**.

Conclusions. The above 3,3-dimethylpiperidines bind both σ_1 and σ_2 receptors, and 3,3-dimethylpiperidine is a moiety able to ingenerate a generic σ affinity. A clear structure-affinity relationship appears arduous to be defined, although the length of the intermediate chain and the bicyclic nucleus seem to be important structural requirements for σ subtype affinities and selectivites. Generally speaking, more strictly proper features appear to be required for a σ_1 selective binding in this series of compounds. Thus compound (+)-**22** can be considered a new, very specific σ_1 ligand. A wider array of structures seems to be tolerated by the σ_2 receptor. Therefore, compounds **29** and **31** are highly potent and quite selective σ_2 ligands.

Experimental Section

Chemistry. Column chromatography was carried out with 1:30 ICN silica gel 60A (63–200 μ m) as the stationary phase. Melting points were determined in open capillaries using a Gallenkamp electrothermal apparatus. Elemental analyses of only solid samples were performed by the microanalytical section of our department with a Carlo Erba 1106 autoanalyzer; the analytical results (C, H, N) were within $\pm 0.4\%$ of the theoretical values, unless otherwise stated. ¹H-NMR spectra were recorded in CDCl₃ either on a Varian EM-390 (when 90 MHz is indicated) using tetramethylsilane as internal standard, or on a Bruker AM 300 WB instrument (300 MHz). Chemical shifts are reported in parts per million (ppm, δ). Recording of mass spectra was done on a Hewlett-Packard 5995 C gas chromatograph/mass spectrometer, electron impact 70 eV, equipped with a Hewlett-Packard 59970 A workstation; only significant m/z peaks, with their percent relative intensity indicated in parentheses, are reported herein. All compounds had NMR and mass spectra that were consistent with their structures. All of the spectral data of amines refer to their free bases. Optical rotations were measured with a Perkin-Elmer 241 MC polarimeter at room temperature (20 °C). HPLC was performed on a Waters chromatograph (Waters Assoc., Milford, MA) model 600 equipped with a U6K model injector and a 481 model variable wavelength detector.

3-(3-Bromo-*n***-propyl)-1***H***-indene (1a): pale yellow oil (44% overall yield); ¹H-NMR (90 MHz) \delta 2.18 (m, 2H, J = 7 Hz, CH_2CH_2Br), 2.51–2.58 (br t, 2H, allylic), 3.20–3.29 (d, 2H, J \sim 2 Hz, benzylic), 3.40 (t, 2H, J = 6 Hz, CH_2Br), 6.25 (t, 1H, J \sim 2 Hz, vinylic), 7.10–7.55 (mm, 4H, aromatic); GC/MS m/z 269 (M⁺ + 3, 2), 268 (M⁺ + 2, 17), 266 (M⁺, 18), 130 (88), 129 (100), 128 (67).**

3-(3-Bromo-*n***-propyl)-1***H***,6-methoxyindene (1c):** colorless oil (55% overall yield); ¹H-NMR 2.20 δ (m, 2H, J = 7 Hz), 2.65–2.71 (br t, 2H), 3.29 (br d, 2H), 3.47 (t, 2H, J = 7 Hz), 3.82 (s, 3H, OCH₃), 6.11 (br t, 1H), 6.83–7.25 (mm, 3H); GC/MS m/z 239 (M⁺ + 3, 2), 238 (M⁺ + 2, 12), 236 (M⁺, 11), 159 (31), 160 (100), 115 (25).

1-(3-Bromo-n-propyl)indane (2a): pale yellow oil (quantitative yield); ¹H-NMR δ 1.51–1.75 (mm, 2H, 1 of chain

CHC H_2 and 1 of *endo*-CH₂), 1.93–2.05 (mm, 3H, 1 of CHC H_2 and CH_2 CH₂Br), 2.23–2.34 (m, 1H, 1 of *endo*-CH₂), 2.79–2.98 (mm, 2H, benzylic CH₂), 3.09–3.18 (m, 1H, benzylic CH), 3.45 (t, 2H, J = 6 Hz, CH₂Br), 7.14–7.22 (mm, 4H, aromatic); GC/MS m/z 241 (M⁺ + 3, 1), 240 (M⁺ + 2, 5), 239 (M⁺ + 1, 1), 238 (M⁺, 5), 117 (100), 115 (27).

1-(3-Bromo-*n***-propyl)-5-methoxyindane (2c):** colorless oil (46% yield); ¹H-NMR δ 1.46–1.51 (m, 1H, 1 of chain CHC*H*₂), 1.53–1.77 (m, 1H, 1 of *endo*-CH₂), 1.84–2.01 (mm, 3H), 2.22–2.60 (m, 1H), 2.77–3.11 (mm, 3H), 3.43 (t, 2H, *J* = 7 Hz), 3.77 (s, 3H, OCH₃), 6.69–7.09 (mm, 3H); GC/MS *m*/*z* 271 (M⁺ + 3, 1), 270 (M⁺ + 2, 5), 269 (M⁺ + 1, 1), 268 (M⁺, 5), 147 (100), 115 (14).

3-(4-Chloro*-n***-butyl)-1***H*,7-methoxyindene (3b): colorless oil (34% overall yield); ¹H-NMR δ 1.75–1.94 (mm, 4H, (*CH*₂)₂-CH₂Cl), 2.56–2.60 (br t, 2H, allylic), 3.30–3.31 (br d, 2H, benzylic), 3.58 (t, 2H, *J* = 6 Hz, CH₂Cl), 3.90 (s, 3H, OCH₃), 6.22 (br s, 1H, vinylic), 6.76–7.33 (mm, 3H, aromatic); GC/MS *m*/*z* 239 (M⁺ + 3, 1), 238 (M⁺ + 2, 9), 237 (M⁺ + 1, 5), 236 (M⁺, 26), 160 (52), 159 (100), 115 (60).

4-(4-Chloro-*n*-butyl)-1,2-dihydro-7-methoxynaphthalene (4c): colorless oil (48% overall yield); ¹H-NMR δ 1.60–1.94 (mm, 4H, (C*H*₂)₂CH₂Cl), 2.18–2.48 (mm, 4H, allylic), 2.70 (t, 2H, J = 8 Hz, benzylic), 3.54 (t, 2H, J = 7 Hz, CH₂Cl), 3.79 (s, 3H, OCH₃), 5.72 (br t, 1H, vinylic), 6.69–7.16 (mm, 3H, aromatic); GC/MS *m*/*z* 253 (M⁺ + 3, 1), 252 (M⁺ + 2, 9), 251 (M⁺ + 1, 5), 250 (M⁺, 26), 174 (100), 173 (22), 159 (68), 144 (28), 128 (32), 115 (41).

4-(5-Chloro-*n***-pentyl)-1,2-dihydronaphthalene (5a):** colorless oil (34% overall yield); ¹H-NMR δ 1.42–1.89 (mm, 6H, (C*H*₂)₃CH₂Cl), 2.22–2.30 and 2.41–2.51 (mm, 4H, allylic), 2.76 (t, 2H, J= 8 Hz, benzylic), 3.55 (t, 2H, J= 7 Hz, CH₂Cl), 5.86–5.89 (br t, 1H, vinylic), 7.13–7.28 (mm, 4H, aromatic); GC/MS *m*/*z* 237 (M⁺ + 3, 1), 236 (M⁺ + 2, 5), 235 (M⁺ + 1, 3), 234 (M⁺, 14), 144 (100), 129 (99), 128 (60), 115 (30).

4-(5-Chloro-*n*-pentyl)-1,2-dihydro-7-methoxynaphthalene (5c): colorless oil (17% overall yield); ¹H-NMR δ 1.42–1.85 (mm, 6H), 2.17–2.24 and 2.39–2.43 (mm, 4H), 2.72 (t, 2H, J = 8 Hz), 3.52 (t, 2H, J = 7 Hz), 3.79 (s, 3H, OCH₃), 5.69–5.72 (br t, 1H, vinylic), 6.69–7.15 (mm, 3H); GC/MS *m*/*z* 267 (M⁺ + 3, 1), 266 (M⁺ + 2, 5), 265 (M⁺ + 1, 3), 264 (M⁺, 14), 174 (100), 129 (99), 159 (36).

1-(4-Chloro-*n***-butyl)-4-methoxyindane (6b):** colorless oil (quantitative yield); ¹H-NMR δ 1.33–1.91 (mm, 7H, (C*H*₂)₃-CH₂Br and 1 of *endo*-CH₂), 2.25–2.36 (m, 1H, 1 of *endo*-CH₂), 2.71–2.97 (mm, 2H, benzylic CH₂), 3.08–3.18 (m, 1H, benzylic CH), 3.57 (t, 2H, *J* = 7 Hz, CH₂Br), 3.84 (s, 3H, OCH₃), 6.68–7.19 (mm, 3H, aromatic); GC/MS *m*/*z* 241 (M⁺ + 3, 1), 240 (M⁺ + 2, 4), 239 (M⁺ + 1, 2), 238 (M⁺, 12), 148 (23), 147 (100), 115 (18).

1-(4-Chloro-*n*-butyl)-6-methoxy-1,2,3,4-tetrahydronaphthalene (7c): colorless oil (quantitative yield); ¹H-NMR δ 1.43–1.92 (mm, 10H, (CH₂)₂CH(CH₂)₃), 2.72–2.75 (mm, 3H, benzylic), 3.55 (t, 2H, J = 7 Hz, CH₂Cl), 3.77 (s, 3H, OCH₃), 6.60–7.19 (mm, 3H, aromatic); GC/MS m/z 254 (M⁺ + 2, 2), 253 (M⁺ + 1, 1), 252 (M⁺, 5), 161 (100).

1-(4-Chloro-*n*-butyl)-7-methoxy-1,2,3,4-tetrahydronaphthalene (7d): colorless oil (60% yield); ¹H-NMR δ 1.45–1.89 (mm, 10H), 2.63–2.76 (mm, 3H), 3.55 (t, 2H, J = 7 Hz), 3.77 (s, 3H), 6.65–7.00 (mm, 3H); GC/MS *m*/*z* 254 (M⁺ + 2, 5), 253 (M⁺ + 1, 2), 252 (M⁺, 13), 162 (21), 161 (100), 115 (13).

1-(5-Chloro-*n*-pentyl)-1,2,3,4-tetrahydronaphthalene **(8a)**: colorless oil (88% yield); ¹H-NMR δ 1.31–2.02 (mm, 12H, (C*H*₂)₂CH(C*H*₂)₄), 2.71–2.95 (mm, 3H, benzylic), 3.57 (t, 2H, J = 7 Hz, CH₂Cl), 7.10–7.22 (mm, 4H, aromatic); GC/MS *m*/*z* 239 (M⁺ + 3, 1), 238 (M⁺ + 2, 2), 237 (M⁺ + 1, 1), 236 (M⁺, 5), 132 (12), 131 (100), 115 (12).

1-(5-Chloro-*n*-pentyl)-6-methoxy-1,2,3,4-tetrahydronaphthalene (8c): colorless oil (quantitative yield); ¹H-NMR δ 1.31–1.89 (mm, 12H), 2.68–2.74 (mm, 3H), 3.52 (t, 2H, J = 7 Hz), 3.76 (s, 3H, OCH₃), 6.59–7.08 (mm, 3H); GC/ MS m/z 268 (M⁺ + 2, 2), 267 (M⁺ + 1, 1), 266 (M⁺, 4), 161 (100). **5-Methoxy-1,2,3,4-tetrahydro-1-naphthaleneacetic Acid** (10): it was purified on silica gel column eluting with CHCl₃; ¹H-NMR (90 MHz) δ 1.60–1.96 (mm, 4H, *endo*-(CH₂)₂), 2.46– 2.77 (mm, 4H, CH₂CO and benzylic CH₂), 3.13–3.50 (m, 1H, CH), 3.80 (s, 3H, OCH₃), 6.58–7.27 (mm, 3H, aromatic), 10.35–10.95 (br s, 1H, OH, D₂O exchanged); GC/MS *m*/*z* 221 (M⁺ + 1, 10), 220 (M⁺, 74), 174 (21), 161 (100), 160 (91), 159 (30), 158 (21), 145 (21), 129 (23), 128 (22), 115 (34).

Enantiomeric Resolution of (\pm)-10. A solution of carboxylic acid (\pm)-10 (2.20 g, 10.0 mmol) and an equimolar amount of R-(+)-1-phenylethylamine (1.21 g) in CHCl₃ was concentrated under reduced pressure. Et₂O was added to precipitate the salt, which was filtered and recrystallized four times from CHCl₃/n-hexane as white needles. These were dissolved in CHCl₃, and the solution was washed three times with 3 N HCl, washed with H_2O_1 , and then dried (Na₂SO₄). The removal of the solvent under reduced pressure gave (+)-10. Enantiomeric excess of (+)-10 was determined by HPLC on Chiralcel OD column (25×0.46 cm, 0.8 mL/min, UV 254 nm) eluting solely with n-hexane/2-propanol/trifluoroacetic acid, 98:2:0.01; (+)-10 was >99% ee. $[\alpha]_D = +8.8^{\circ}$ (c 1.0, CHCl₃). The collected mother liquors were concentrated to dryness under reduced pressure, and the residue was solubilized in CHCl₃. This solution was washed (dil. HCl), dried (Na₂SO₄), and then concentrated to dryness in vacuo. The residual carboxylic acid was dissolved in CHCl₃ and mixed to an equimolar amount of S-(-)-1-phenylethylamine. The enantiomer (-)-10 was obtained and analyzed for enantiomeric excess as previously described for the enantiomer (+)-10. Compound (–)-10 displayed ee > 99% and $[\alpha]_D = -8.7^\circ$ (*c* 1.0, CHCl₃).

(+)-3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic Acid Methyl Ester [(+)-11]. The carboxylic acid (+)-10 (1.10 g, 5.0 mmol) in anhydrous Et₂O (15 mL) was stirred with freshly distilled SOCl₂ (10 mL) and with a few drops of pyridine for 30 min at room temperature. The mixture was concentrated under reduced pressure to give a pale yellow oil. The residue dissolved in anhydrous toluene (10 mL) was added to a cooled $(-10 \,^{\circ}\text{C})$ diazomethane ethereal solution (prepared from 15 g of Diazald). The mixture was stirred for 1 h at the same temperature and then for 2 h at room temperature. Then it was concentrated under reduced pressure, and the residue was refluxed in anhydrous MeOH for 2 h in the presence of 10% silver benzoate in triethylamine (1 mL). The cooled mixture was filtered on Celite and concentrated under reduced pressure. The crude residue was chromatographed on a silica gel column (petroleum ether/ethyl acetate, 9:1, as eluent) to give (+)-11 as a colorless oil (1.03 g, 83% yield): $[\alpha]_D = +11.8^{\circ}$ (*c* 2.4, CHCl₃); ¹H-NMR (90 MHz) δ 1.55-2.20 (mm, 6H, (CH₂)₂CHCH₂), 2.31-2.56 (m, 2H, CH₂-CO), 2.58-2.98 (mm, 3H, benzylic), 3.71 (s, 3H, COOCH₃), 3.82 (s, 3H, OCH₃), 6.60-7.33 (mm, 3H, aromatic); GC/MS *m*/*z* 249 $(M^+ + 1, 6), 248 (M^+, 38), 175 (27), 174 (100), 162 (23), 161$ (62), 159 (23), 115 (25).

(-)-3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic Acid Methyl Ester [(-)-11]. The enantiomer (-)-11 was prepared as above starting from (-)-10. The compound (-)-11 had $[\alpha]_D = -12.0^\circ$ (*c* 3.0, CHCl₃).

(-)-3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propanol [(-)-12b]. A solution of ester (+)-11 (4.0 mmol) in anhydrous THF was added to a cooled (-10 °C) suspension of LiAlH₄ (0.16 g, 4.3 mmol) in the same solvent. The mixture was stirred overnight at room temperature and then cooled and treated with water. The solid was filtered, and the filtrate was concentrated under reduced pressure. The residue was chromatographed (CH₂Cl₂ as eluent) to give (-)-12b as a colorless oil (0.85 g, 90% yield): $[\alpha]_D = -2.8^\circ$ (*c* 3.8, CHCl₃); ¹H-NMR (90 MHz) δ 1.50–1.91 (mm, 9H, (CH₂)₂CH(CH₂)₂ and OH, D₂O exchanged), 2.53–2.88 (mm, 3H, benzylic), 3.54–3.73 (m, 2H, CH₂OH), 3.80 (s, 3H, OCH₃), 6.57–7.26 (m, 3H, aromatic); GC/MS *m*/*z* 221 (M⁺ + 1, 3), 220 (M⁺, 23), 162 (19), 161 (100), 115 (20).

(+)-3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propanol [(+)-12b]. The alcohol (+)-12b was prepared starting from (–)-11, as described for (–)-12b. (+)-12b had $[\alpha]_D = +3.0^{\circ}$ (*c* 3.0, CHCl₃).

2-(1,2,3,4-Tetrahydronaphthalen-1-yl)ethyl Methanesulfonate (13a). Methanesulfonyl chloride (2.6 g, 23 mmol) was added to a solution of (1,2,3,4-tetrahydronaphthalen-1yl)ethanol, **12a** (3.7 g, 21 mmol), and triethylamine (4.2 g, 42 mmol) in 50 mL of CH₂Cl₂. The reaction was worked up as described.³⁹ The crude oil was chromatographed (CH₂Cl₂ as eluent) to obtain compound **13a** (4.0 g, 75% yield): ¹H-NMR δ 1.64–2.23 (mm, 6H, (CH₂)₂CHCH₂), 2.70–2.87 (mm, 2H, benzylic CH₂), 2.94–3.01 (mm, 4H, SCH₃ and benzylic CH), 4.33 (t, 2H, J = 6 Hz, CH₂O), 7.04–7.15 (mm, 4H, aromatic); GC/MS m/z 256 (M⁺ + 2, 1), 255 (M⁺ + 1, 1), 254 (M⁺, 2), 131 (59), 130 (100), 129 (56), 115 (27), 91 (26).

(+)-3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*propyl Methanesulfonate [(+)-13b]. Mesylchloride (0.6 g, 5.0 mmol) and (-)-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propanol, (-)-12b (1.0 g, 4.6 mmol) were reacted in the presence of triethylamine (0.9 g, 9.0 mmol) according to the procedure described for 13a, to afford 0.98 g of (+)-13b (75% yield): $[\alpha]_D = +2.8^{\circ} (c 1.5, CHCl_3)$; ¹H-NMR δ 1.58–1.95 (mm, 8H, $(CH_2)_2CH(CH_2)_2$), 2.51–2.80 (mm, 3H, benzylic), 2.98 (s, 3H, SCH₃), 3.79 (s, 3H, OCH₃), 4.22 (t, 2H, J = 6 Hz, CH₂O), 6.58–7.15 (mm, 3H, aromatic); GC/MS *m*/*z* 301 (M⁺ + 3, 1), 300 (M⁺ + 2, 3), 299 (M⁺ + 1, 9), 298 (M⁺, 51), 174 (43), 161 (100), 159 (27).

(-)-3-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*propyl Methanesulfonate [(-)-13b]. According to the above procedure, (-)-13b was prepared from (+)-12b in 56% yield: $[\alpha]_D = -3.4^\circ$ (*c* 1.0, CHCl₃).

5-Phenyl-n-pentanoic Acid 3,3-Dimethylpiperidine Amide (15). Freshly distilled SOCl₂ (10 mL) was added dropwise to a stirred and ice-cooled solution of 5-phenylvaleric acid, 14, (10.0 g, 56 mmol) in CH₂Cl₂ (100 mL) under N₂. When the room temperature was reached, the solvent was evaporated under reduced pressure. The crude yellow oil was dissolved in CH₂Cl₂ (50 mL) and added dropwise to a stirred and ice-cooled solution of 3,3-dimethylpiperidine (7.0 g, 62 mmol) and triethylamine (excess) in CH₂Cl₂ (50 mL), under N₂. The mixture was stirred overnight at room temperature, and then it was washed twice (20 mL of 2N HCl), dried (Na₂-SO₄), and concentrated under reduced pressure. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate, 7:3 as eluent) to give pure amide 15 (8.3 g, 54% yield) as a yellow oil: ¹H-NMR⁴³ δ 0.87 and 0.89 (2s, 6H, 2 CH₃), 1.36 (t, 2H, J = 6 Hz, $CH_2C(CH_3)_2$), 1.52 (m, 2H, NCH₂CH₂CH₂); 1.60–1.73 (mm, 4H, chain CH₂CH₂), 2.27 and 2.34 (m, 2H, CH₂CO), 2.62 (br t, 2H, benzylic), 3.01 and 3.23 $(2s, 2H, NCH_2C(CH_3)_2)$, 3.28 and 3.48 (2t, 2H, J = 5.7 Hz,NCH₂CH₂), 7.13-7.28 (mm, 5H, aromatic); GC/MS m/z 275 $(M^+ + 2, 1), 274 (M^+ + 1, 7), 273 (M^+, 32), 168 (56), 155 (60),$ 154 (34), 140 (48), 98 (33), 91 (100).

Preparation of 3,3-Dimethylpiperidine Derivatives 16–22, 24–26, 28–32. Title compounds were prepared according to a reported reaction.³¹ Unless otherwise stated, they were obtained as colorless oils after column chromatography (CH₂Cl₂/MeOH, 95:5, as eluent) with a 60–70% yield.

3,3-Dimethyl-1-[3-(1*H***-inden-3-yl)-***n***-propyl]piperidine (16):** pale yellow oil, eluted with CHCl₃ (73% yield); ¹H-NMR δ 0.95 (s, 6H, 2 CH₃), 1.21 (t, 2H, J = 6 Hz, $CH_2C(CH_3)_2$), 1.55–1.61 (mm, 2H, piperidine CH₂), 1.78–1.88 (m, 2H, chain CH₂), 2.02 [s, 2H, NCH₂C(CH₃)₂], 2.32–2.36 (mm, 4H, CH₂-NCH₂), 2.53–2.59 (mm, 2H, allylic), 3.30–3.31 (d, 2H, J = 2 Hz, benzylic), 7.13–7.45 (m, 1H, vinylic), 6.64–6.97 (mm, 4H, aromatic); GC/MS m/z 270 (M⁺ + 1, 1), 269 (M⁺, 2), 128 (22), 126 (100).

3,3-Dimethyl-1-[3-(indan-1-yl)-*n***-propyl]piperidine (17):** eluted with CHCl₃ (45% yield); ¹H-NMR δ 0.92 (s, 6H, 2 CH₃), 1.19 (t, 2H, J = 6 Hz, $CH_2C(CH_3)_2$), 1.33–1.89 (mm, 7H, CH-(CH_2)₂, 1 of *endo*-CH₂ and piperidine CH₂), 1.98–2.00 (br d, 2H, NCH₂C(CH₃)₂), 2.21–2.32 (mm, 5H, CH₂NCH₂ and 1 of *endo*-CH₂), 2.74–3.13 (mm, 3H, benzylic), 7.08–7.21 (mm, 4H, aromatic); GC/MS m/z 272 (M⁺ + 1, 2), 271 (M⁺, 7), 126 (100). **3,3-Dimethyl-1-[3-(5-methoxyindan-1-yl)-***n***-propyl]piperidine (18):** 89% yield; ¹H-NMR δ 0.93 (s, 6H), 1.20 (t, 2H, J = 6 Hz), 1.24–1.84 (mm, 7H), 2.03 (br d, 2H), 2.21–2.37 (mm, 5H), 2.72–3.07 (mm, 3H), 3.76 (s, 3H, OCH₃), 6.68–7.08 (mm, 3H); GC/MS m/z 302 (M⁺ + 1, 3), 301 (M⁺, 9), 126 (100).

3,3-Dimethyl-1-[4-(4-methoxyindan-1-yl)-*n***-butyl]piperidine (19):** ¹H-NMR δ 0.92 (s, 6H), 1.19 (t, 2H, J = 6 Hz), 1.35–1.86 (mm, 9H, CH(CH₂)₃, 1 of *endo*-CH₂ and piperidine CH₂), 2.00 (br s, 2H), 2.21–2.32 (mm, 5H), 2.67–3.13 (m, 3H), 3.81 (s, 3H, OCH₃), 6.64–7.16 (mm, 3H); GC/MS *m*/*z* 316 (M⁺ + 1, 2), 315 (M⁺, 8), 126 (100).

3,3-Dimethyl-1-[2-(1,2,3,4-tetrahydronaphthalen-1-yl)ethyl]piperidine (20): eluted with CHCl₃/MeOH, 9:1; ¹H-NMR δ 0.95 (s, 6 H, 2 CH₃), 1.23 (t, 2 H, J = 6 Hz, CH₂C(CH₃)₂), 1.56–2.11 (mm, 10 H, (CH₂)₂CH(CH₂)₂N and piperidine CH₂), 2.26–2.46 (m, 4H, CH₂NCH₂), 2.74–2.90 (mm, 3H, benzylic), 7.02–7.19 (m, 4H, aromatic); GC/MS m/z 273 (M⁺ + 2, 1), 272 (M⁺ + 1, 1), 271 (M⁺, 10), 126 (100).

3,3-Dimethyl-1-[3-(1,2,3,4-tetrahydronaphthalen-1-yl)*n*-**propyl]piperidine (21):** 58% yield; ¹H-NMR δ 0.98 (s, 6H, 2 CH₃), 1.24–1.25 (m, 2H, CH₂C(CH₃)₂), 1.55–1.86 (mm, 10H, (CH₂)₂CH(CH₂)₂ and piperidine CH₂), 1.97–2.67 (mm, 6H, NCH₂C(CH₃)₂ and CH₂NCH₂), 2.71–2.74 (mm, 3H, benzylic), 7.02–7.16 (mm, 4H, aromatic); GC/MS *m*/*z* 286 (M⁺ + 1, 2), 285 (M⁺, 9), 126 (100).

(+)- and (-)-3,3-Dimethyl-1-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propyl]piperidine [(+)- and (-)-22]. Enantiomeric excess for (+)-22 and (-)-22 was determined by chiral HPLC in the same conditions as for (+)-10 and (-)-10, eluting solely with *n*-hexane/2-propanol 98:2; both enantiomers displayed ee > 99%; $[\alpha]_D = +1.0^\circ$ and -1.0° , respectively (*c* 1.0, CHCl₃).

3,3-Dimethyl-1-[3-(5-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n***-propyl]piperidine (23). Compound 22 (1.0 g, 3.2 mmol) was stirred in 80 mL of 48% HBr, and then the mixture was refluxed for 12 h. After cooling, it was made alkaline with conc. KOH, and then it was extracted three times with Et₂O. The collected organic layers were dried (Na₂SO₄) and evaporated to dryness, affording a residue which was purified by column chromatography (CHCl₃/CH₃OH, 9:1, as eluent). Pure 23** (0.91 g, 93% yield) was a pale yellow oil: ¹H-NMR δ 0.94 (s, 6H, 2 CH₃), 1.21 (t, 2H, *J* = 6 Hz, *CH*₂C(CH₃)₂), 1.50–1.91 (mm, 10H, (*CH*₂)₂CH(*CH*₂)₂ and piperidine CH₂), 2.00–2.10 (br s, 2H, NC*H*₂C(CH₃)₂), 2.25–2.35 (mm, 4H, CH₂-NCH₂), 2.55–2.80 (mm, 3H, benzylic), 4.80–5.30 (br s, 1H, OH, D₂O exchanged), 6.56–7.01 (mm, 3H, aromatic); GC/MS *m*/*z* 302 (M⁺ + 1, 4), 301 (M⁺, 15), 126 (100).

3,3-Dimethyl-1-[3-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propyl]piperidine (24): ¹H-NMR δ 0.99 (s, 6H, 2 CH₃), 1.26 (t, 2H, J = 6 Hz, $CH_2C(CH_3)_2$), 1.51–1.84 (mm, 10H, $(CH_2)_2CH(CH_2)_2$ and piperidine CH₂), 2.10–2.30 (br s, 2H, NCH₂C(CH₃)₂), 2.35–2.55 (mm, 4H, CH₂NCH₂), 2.60– 2.75 (mm, 3H, benzylic), 3.74 (s, 3H, OCH₃), 6.56–7.06 (mm, 3H, aromatic); GC/MS *m*/*z* 316 (M⁺ + 1, 2), 315 (M⁺, 10), 126 (100).

3,3-Dimethyl-1-[3-(7-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-propyl]piperidine (25): 96% yield; ¹H-NMR δ 0.95 (s, 6H), 1.21 (t, 2H, J = 6 Hz), 1.46–1.86 (mm, 10H), 1.93–2.15 (br d, 2H), 2.26–2.30 (mm, 4H), 2.66–2.73 (mm, 3H), 3.77 (s, 3H), 6.64–6.97 (mm, 3H); GC/MS m/z 316 (M⁺ + 1, 2), 315 (M⁺, 8), 126 (100).

3,3-Dimethyl-1-[4-(1,2-dihydronaphthalen-4-yl)-*n*-**bu-tyl]piperidine (26):** pale yellow oil, eluted with CHCl₃; ¹H-NMR δ 0.92 (s, 6H, 2 CH₃), 1.17–1.22 (mm, 2H, CH₂C(CH₃)₂), 1.35–1.68 (mm, 6H, CH₂(CH₂)₂CH₂N and piperidine CH₂), 1.99 (s, 2H, NCH₂C(CH₃)₂), 2.20–2.50 (mm, 8H, 2 allyl CH₂ and CH₂NCH₂), 2.72 (t, 2H, J = 8 Hz, benzyl CH₂), 5.84 (br t, 1H, vinyl CH), 7.09–7.26 (mm, 4H, aromatic); GC/MS *m*/*z* 298 (M⁺ + 1, 5), 297 (M⁺, 21), 126 (100).

3,3-Dimethyl-1-[4-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n***-butyl]piperidine (28):** eluted with CHCl₃; ¹H-NMR δ 0.92 (s, 6H), 1.19 (t, 2H, J = 6 Hz), 1.28–1.83 (mm, 12H, (CH₂)₂CH(CH₂)₃ and piperidine CH₂), 1.99 (s, 2H), 2.21– 2.26 (mm, 4H), 2.51–2.77 (mm, 3H), 3.80 (s, 3H) 6.63–7.12 (mm, 3H); GC/MS m/z 330 (M⁺ + 1, 3), 329 (M⁺, 11), 126 (100).

3,3-Dimethyl-1-[4-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n***-butyl]piperidine (29):** ¹H-NMR δ 0.92 (s, 6H), 1.19 (t, 2H, J = 6 Hz), 1.27–1.88 (mm, 12H), 1.98 (s, 2H), 2.21–2.30 (mm, 4H), 2.65–2.73 (mm, 3H), 3.75 (s, 3H) 6.58– 7.08 (m, 3H); GC/MS m/z 330 (M⁺ + 1, 3), 329 (M⁺, 14), 126 (100).

3,3-Dimethyl-1-[4-(7-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n***-butyl]piperidine (30):** 36% yield; ¹H-NMR δ 0.92 (s, 6H), 1.19 (t, 2H, J = 6 Hz), 1.30–1.85 (mm, 12H), 1.99 (s, 2H), 2.24–2.26 (mm, 4H), 2.64–2.74 (mm, 3H), 3.77 (s, 3H) 6.63–6.99 (mm, 3H); GC/MS m/z 330 (M⁺ + 1, 3), 329 (M⁺, 12), 126 (100).

3,3-Dimethyl-1-[5-(1,2,3,4-tetrahydronaphthalen-1-yl)*n*-pentyl]piperidine (31): ¹H-NMR δ 0.92 (s, 6H), 1.19 (t, 2H, J = 6 Hz), 1.24–1.88 (mm, 14H, (CH₂)₂CH(CH₂)₄ and piperidine CH₂), 1.98 (s, 2H), 2.19–2.26 (mm, 4H), 2.67–2.76 (mm, 3H), 7.02–7.17 (mm, 4H); GC/MS *m*/*z* 314 (M⁺ + 1, 1), 343 (M⁺, 6), 126 (100).

3,3-Dimethyl-1-[5-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-*n*-pentyl]piperidine (32): eluted with CHCl₃; ¹H-NMR δ 0.93 (s, 6H), 1.20 (t, 2H, J = 6 Hz), 1.24–1.89 (mm, 14H), 2.02 (s, 2H), 2.15–2.27 (mm, 4H), 2.65–2.76 (mm, 3H), 3.75 (s, 3H, OCH₃) 6.57–7.08 (mm, 3H); GC/MS *m/z* 344 (M⁺ + 1, 6), 343 (M⁺, 23), 126 (100).

3,3-Dimethyl-1-(5-phenyl-*n***-pentyl)piperidine (33).** Li-AlH₄ (1.17 g) was added to a stirred solution of amide **15** (8.20 g, 30 mmol) in anhydrous THF (100 mL) under N₂. After 1 h, the reaction mixture was poured on ice, and the organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (CH₂Cl₂/MeOH, 95:5, as eluent) to afford **33** as a colorless oil in quantitative yield: ¹H-NMR δ 0.95 (s, 6H, 2 CH₃), 1.22 (t, 2H, J = 6 Hz, CH₂C(CH₃)₂), 1.31–1.39 (mm, 2H, piperidine CH₂), 1.41–1.71 (mm, 6H, PhCH₂(CH₂)₃), 2.01 (s, 2H, NCH₂C(CH₃)₂), 2.25–2.29 (mm, 4H, CH₂NH₂, 2.63 (t, 2H, J = 8 Hz, benzylic), 7.16–7.32 (mm, 5H, aromatic); GC/MS *m*/*z* 260 (M⁺ + 1, 1), 259 (M⁺, 3), 126 (100).

Pharmacological Methods. Procedures involving use of small laboratory rodents and their care were conducted in conformity with institutional guidelines that are in compliance with national laws and policies (EEC Council Directive 86/609 and Italian government act 116/January 27, 1992).

 σ_1 Receptor Binding Experiments: [³H]-(+)-SKF 10047 Binding. The method adopted was originally described by McCann et al.⁴⁴ In brief, male Sprague Dawley rats (Charles River, Italy) were sacrificed by decapitation. The brains were rapidly removed, and whole fresh brain, minus the cerebellum and pons-medulla oblongata, was homogenized in 30 volumes of 5 mM Tris-HCl (pH = 8.0 at 25 °C) containing 10 mM K⁺-EDTA with a Brinkmann Polytron (setting 5 for 3×15 s). The homogenate was centrifuged at 48000g for 15 min at 4 °C. The supernatant was discarded, and the pellets were washed once by resuspension in fresh buffer and then centrifuged. The final pellets were either resuspended in the incubation buffer or stored (for a maximum of 2 days) at -80°C until assayed. For displacement experiments each sample received the following in a final volume of 0.5 mL: brain homogenate, equivalent of 8-10 mg of tissue based on the original w.w., 4-5 nM [3H]-(+)-SKF 10047 (New England Nuclear, specific activity 60 Ci/mmol), 300 nM unlabeled MK-801 to block binding of (+)-SKF 10047 to PCP receptors, and various concentrations $(10^{-10}-10^{-4} \text{ M})$ of the test substance. After incubation at 25 °C for 60 min, the reaction was ended by the addition of 5 mL of ice-cold Tris buffer and rapid filtration through Whatman GF/B filter paper presoaked in cold Tris buffer containing 0.5% polyethyleneimine to reduce nonspecific binding. Filters were then washed with $2 \times 5 \text{ mL}$ of cold buffer. Filters were then counted by liquid scintillation spectrometry using NEN Formula 989 as scintillation cocktail. Specific $[^{3}H]$ -(+)-SKF 10047 binding was defined as the difference between binding in the absence or presence of 100 μ M cold (+)-SKF 10047, a generous gift of SKB, Italy. The K_d value for (+)-SKF 10047 was calculated from saturation experiments and was 3.8 nM.

σ Total Binding Experiments: [³H]-DTG Binding. These experiments were carried out with 7–8 nM [³H]-DTG according to the method formerly followed³² and originally described by Weber et al.⁴⁵ The K_d value for DTG was 54 nM.

References

- Walker, J. M.; Bowen, W. D.; Walker, F. O.; Matsumoto, R. R.; de Costa, B.; Rice, K. C. Sigma receptors: biology and function. *Pharmacol. Rev.* **1990**, *42*, 355–402.
 Gilligan, P. J.; Tam, S. W. Sigma receptor ligands: potential
- (2) Gilligan, P. J.; Tam, S. W. Sigma receptor ligands: potential drugs for the treatment of CNS disorders? *Drugs News Perspect.* 1994, 7, 13–18.
- (3) Debonnel, G.; de Montigny, C. Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: possible implications for the treatment of psychiatric disorders. *Life Sci.* **1996**, *58*, 721–734.
- (4) Snyder, S. H.; Largent, B. L. Receptor mechanisms in antipsychotic drug action: Focus on sigma receptors. *J. Neuropsychiat.* 1989, 1, 7–15.
- (5) Gewirtz, G. R.; Gorman, J. M.; Volavka, J.; Macaluso, J.; Gribkoff, G.; Taylor, D. P. BMY-14802, a sigma receptor ligand for the treatment of schizophrenia. *Neuropsychopharmacology* **1994**, *10*, 37–40.
- (6) Frieboes, R. M.; Murck, H.; Wiedemann, K.; Holsboer, F.; Steiger, A. Open clinical trial on the sigma ligand panamesine in patients with schizophrenia. *Psychopharmacology* **1997**, *132*, 82–88.
- (7) Izenwasser, S.; Hauck Newman, A.; Katz, J. L. Cocaine and several σ receptor ligands inhibit dopamine uptake in rat caudate-putamen. *Eur. J. Pharmacol.* **1993**, *243*, 201–205.
- (8) Ujike, H.; Kuroda, S.; Otsuki, S. Sigma receptor antagonists block the development of sensitization to cocaine. *Eur. J. Pharmacol.* 1996, *296*, 123–128.
 (9) Lin, Z.; Kadaba, P. K. Molecular Targets for the Rational Design
- (9) Lin, Z.; Kadaba, P. K. Molecular Targets for the Rational Design of Antiepileptic Drugs and Related Neuroprotective Agents. *Med. Res. Rev.* **1997**, *17*, 537–572.
- (10) Taylor, D. P.; Yevich, J. P.; Dextraze, P.; Moon, S. L.; Behling, S. H.; Defnet, J.; Geissler, M. In *Multiple Sigma and PCP Receptor Ligands: Mechanism for Neuromodulation and Neuroprotection*? Kamenka, J.-M., Domino, E. F., Eds.; NPP Books: Ann Arbor, MI, 1992; pp 767–778.
- (11) De Loore, K. L.; Lesage, A. S.; Peeters, L.; Leysen, J. E. Various sigma ligands exert long-term protection against glutamate toxicity in primary hippocampal neurones; apparent non involvement of identified sigma-2 sites. *Neurosci. Res. Comm.* **1994**, *14*, 43-52.
- (12) Maurice, T.; Lockhart, B. P. Neuroprotective and anti-amnesic potentials of σ (sigma) receptor ligands. *Prog. Neuro-Psychopharmacol. Biol. Psychiat.* **1997**, *21*, 69–102.
- (13) Matsuno, K.; Senda, T.; Kobayashi, T.; Okamoto, K.; Nakata, K.; Mita, S. SA4503, a novel cognitive enhancer, with sigma 1 receptor agonistic properties. *Behav. Brain Res.* **1997**, *83*, 221– 224.
- (14) Everaert, H.; Flamen, P.; Franken, P. R.; Verhaeghe, W.; Bossuyt, A. Sigma-receptor imaging by means of 1-123-IDAB scintigraphy: clinical application in melanoma and non-small cell lung cancer. *Anticancer Res.* **1997**, *17*, 1577–1582.
 (15) Vilner, B. J.; Bowen, W. D.; John, C. S.; Lim, B. B.; Geyer, B.
- Vilner, B. J.; Bowen, W. D.; John, C. S.; Lim, B. B.; Geyer, B. C.; 99mTc-labeled sigma-receptor-binding complex: synthesis, characterization, and specific binding to human ductal breast carcinoma (T47D) cells. *Bioconjug. Chem.* **1997**, *8*, 304–309.
 Kobayashi, T.; Matsuno, K.; Murai, M.; Mita, S. Sigma 1 receptor
- (16) Kobayashi, T.; Matsuno, K.; Murai, M.; Mita, S. Sigma 1 receptor subtype is involved in the facilitation of cortical dopaminergic transmission in the rat brain. *Neurochem. Res.* **1997**, *22*, 1105– 1109.
- (17) Klette, K. L.; Lin, Y.; Clapp, L. E.; De Coster, M. A.; Moreton, J. E.; Tortella, F. C.; Neuroprotective sigma ligands attenuate NMDA and trans-ACPD-induced calcium signaling in rat primary neurons. *Brain Res.* **1997**, *756*, 231–240.
- (18) Vilner, B. J.; De Costa, B. R.; Bowen, W. D. Cytotoxicity of sigma ligands: Sigma receptor-mediated effects on cellular morphology and viability. *J. Neurosci.* **1995**, *15*, 117–134.
- (19) Steardo, L.; Monteleone, P.; d'Istria, M.; Serino, I.; Maj, M.; Cuomo, V. Sigma receptor modulation of noradrenergic-stimulated pineal melatonin biosynthesis in rats. *J. Neurochem.* **1996**, *67*, 287–293.
- (20) Bastianetto, S.; Perrault, G.; Sanger, D. J. Pharmacological evidence for the involvement of sigma sites in DTG-induced contralateral circling in rats. *Neuropharmacology* **1995**, *34*, 107– 114.
- (21) Jeanjean, A. P.; Laterre, E. C.; Maloteaux, J. M. Neuroleptic binding to sigma receptors: possible involvement in neurolepticinduced acute dystonia. *Biol. Psychiatry* **1997**, *41*, 1010–1019.

- (22) Quirion, R.; Bowen, W. D.; Itzhak, Y.; Junien, J. L.; Musacchio, J. M.; Rothman, R. B.; Su T.-P.; Tam, S. W.; Taylor, D. P. A proposal for the classification of sigma binding sites. *Trends Pharmacol. Sci.* 1992, *13*, 85–86.
 (23) Booth, R. G.; Wyrick, S. D. A novel brain receptor recognized by
- (23) Booth, R. G.; Wyrick, S. D. A novel brain receptor recognized by phenylaminotetralins may represent a sigma (σ₃) receptor subtype. *Med. Chem. Res.* **1994**, *4*, 225–237.
 (24) Hanner, M.; Moebius, F. F.; Flandorfer, A.; Knaus, H.-G.;
- (24) Hanner, M.; Moebius, F. F.; Flandorfer, A.; Knaus, H.-G.; Striessnig, J.; Kempner, E.; Glossmann, H. Purification, molecular cloning, and expression of mammalian sigma₁-binding site. *Proc. Natl. Acad. Sci. U.S.A.* **1996**, *93*, 8072–8077.
- (25) Kekuda, R.; Prasad, P. D.; Fei, Y.-J.; Leibach, F. H.; Ganapathy, V. Cloning and Functional Expression of the Human Type 1 Sigma Receptor (hSigmaR1). *Biochem. Biophys. Res. Comm.* **1996**, 229, 553–558.
- (26) Moebius, F. F.; Striessnig, J.; Glossmann, H. The mysteries of sigma receptors: new family members reveal a role in cholesterol synthesis. *Trends Pharmacol. Sci.* **1997**, *18*, 67–70.
- (27) de Costa, B. R.; He, X.-S.; Dominguez, C.; Williams, W.; Rice, K. C.; Bowen, W. D. The role of novel ligands in biological characterization of sigma receptors. In *Perspective in Receptor Research*; Giardinà, D., Piergentili, A., Pigini, M., Eds.; Elsevier Science B. V.: Amsterdam, 1996; pp 313–320.
- Science B. V.: Amsterdam, 1996; pp 313–320.
 (28) Danso-Danquah, R.; Bai, X.; Zhang, X.; Mascarella, S. W.; Williams, W.; Sine, B.; Bowen, W. D.; Carroll, F. I. Synthesis and σ Binding Properties of 2'-Substituted 5,9a-Dimethyl-6,7benzomorphans. J. Med. Chem. 1995, 38, 2978–2985.
- (29) Newman, A. H.; Shah, J. H.; Izenwasser, S.; Heller, B.; Mattson, M.; Tortella, F. C. Highly selective σ₁ ligands based on dextromethorphan. *Med. Chem. Res.* **1996**, *θ*, 102–117.
- (30) Perregaard, J.; Moltzen, E. K.; Meier, E.; Sánchez, C. σ Ligands with Subnanomolar Affinity and Preference for the σ_2 Binding Site. 1. 3-(ω -Aminoalkyl)-1*H*-indoles. *J. Med. Chem.* **1995**, *38*, 1998–2008.
- (31) Berardi, F.; Giudice, G.; Perrone, R.; Tortorella, V.; Govoni, S.; Lucchi, L. Novel Potent σ₁ Ligands: *N*-[ω-(Tetralin-1-yl)alkyl]piperidine Derivatives. *J. Med. Chem.* **1996**, *39*, 4255–4260.
- (32) Berardi, F.; Colabufo, N. A.; Giudice, G.; Perrone, R.; Tortorella, V.; Govoni, S.; Lucchi, L. New σ and 5-HT_{1A} Receptor Ligands: ω -(Tetralin-1-yl)-*n*-alkylamine Derivatives. *J. Med. Chem.* **1996**, *39*, 176–182.
- (33) Glennon, R. A.; Ablordeppey, S. Y.; Ismaiel A. M.; El-Ashmawy M. B.; Fischer, J. B.; Burke Howie, K. J. Structural Features important for σ₁ Receptor Binding. *J. Med. Chem.* **1994**, *37*, 1214–1219.
- (34) Perrone, R.; Berardi, F.; Colabufo, N. A.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Vanotti, E.; Govoni, S. Mixed 5-HT_{1A}/D-2 Activity of a New Model of Arylpiperazine: 1-Aryl-4-[3-(1,2dihydronaphthalen-4-yl)-n-propyl]piperazines. 1. Synthesis and Structure-Activity Relationships. *J. Med. Chem.* **1994**, *37*, 99– 104.
- (35) Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govoni, S. High Affinity and Selectivity on 5-HT_{1A} Receptor of 1-Aryl-4-[(1tetralin)alkyl]piperazines. 2. J. Med. Chem. **1995**, 38, 942–949.
- (36) Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fornaretto, M. G.; Caccia, C.; McArthur, R. A. Structure-Activity Relationship Studies on the 5-HT_{1A} Receptor Affinity of 1-Phenyl-4-[ω-(α- or β-tetralinyl)alkyl]piperazines. 4. J. Med. Chem. **1996**, 39, 4928–4934.
- (37) Reimann, E.; Voss, D. On the Synthesis of 3-(1-Tetralyl)- and 3-[5-(5,6,7,8-Tetrahydro)-quinolyl]alanine. Arch. Pharm. 1977, 310, 2–9.
- (38) Taylor, S. K.; Hockerman, G. H.; Karrick, G. L.; Lyle, S. B.; Schramm, S. B. Friedel-Crafts Cyclialkylations of Some Epoxides. J. Org. Chem. 1983, 48, 2449–2452.
- (39) Loiodice, F.; Longo, A.; Bianco, P.; Tortorella, V. 6-Chloro-2,3-Dihydro-4H-1-Benzopyran Carboxylic Acids: Synthesis, Optical Resolution and Absolute Configuration. *Tetrahedron: Asymmetry* **1995**, *6*, 1001–1011.
- (40) Craig, J. C.; Dinner, A.; Mulligan, P. J. A Novel Variant of the Favorskii Reaction. J. Org. Chem. 1972, 37, 3539–3541.
- (41) Bachmann, W. E.; Thomas, D. G. The Synthesis of the Sex Hormones. An Analog of Equilenin Lacking the Phenolic A Ring. J. Am. Chem. Soc. 1941, 63, 598–602.
- J. Am. Chem. Soc. 1941, 63, 598–602.
 (42) Munson, P. J.; Rodbard, D. Ligand: a versatile computerized approach for characterization of ligand binding systems. Anal. Biochem. 1980, 107, 220–239.
- *BioChem.* **1900**, *107*, *220*⁻, *235*. (43) An ¹H-NMR study at varying temperature was carried out in DMSO- d_6 (at 20 °C, ∂): 0.80 and 0.85 (2s, 6H, 2 CH₃), 1.29– 1.64 (mm, 8H, CH₂CH₂C(CH₃)₂ and chain CH₂CH₂), 2.25 and 2.31 (2t, 2H, J = 7.1 Hz, CH₂CO), 2.53–2.62 (2 overlapped t, 2H, benzylic), 3.06 and 3.12 (2s, 2H, NCH₂C(CH₃)₂), 3.26–3.39 (mm, 2H, NCH₂CH₂), 7.11–7.30 (mm, 5H, aromatic). The appearance of spectrum recorded at higher temperatures changed as detailed below. The two triplets at 2.25 and 2.31 δ began to merge at 40 °C and coalesced in a broad singlet (2.29 δ) at 80 °C; the signal at 2.53–2.62 δ began to become one triplet at 40

°C, better resolved on raising the temperature (2.59 δ, J = 7.2 Hz at 80 °C); the two singlets at 3.06 and 3.12 δ merged at 60 °C and coalesced in a broad singlet at 80 °C (3.10 δ); similarly, the signal at 3.26-3.39 coalesced in a broad signal at 60 °C and in a broad singlet at 80 °C (3.34 δ). Therefore there is evidence that the compound **23** presents nearly 50% of each of the two stable conformational isomers at room temperature.
(44) McCann, D. J.; Weissman, A. D.; Tsung-Ping, S. U. Sigma-1 and Sigma-2 Sites in Rat Brain; Comparison of Regional, Ontogenic and Subcellular Pattern. *Synapse* **1994**, *17*, 182–189.

(45) Weber E.; Sonders M.; Quarum, M.; Mc Lean, S.; Pou, S.; Keana, J. F. W. 1,3-Di(2-[5-³H]tolyl)guanidine a selective ligand that labels σ-type receptors for psychotomimetic opiates and anti-psychotic drugs. *Proc. Natl. Acad. Sci. U.S.A.* **1986**, *83*, 8784–8788.

JM970692A